1	(i) [radius =	B1	B0 for ± 4	
	[centre] (4, 2)	B 1		condone omission of brackets
1	(ii) $(x-4)^2 + (-2)^2 = 16$ oe	M1	for subst <i>y</i> = 0 in circle eqn;	NB candidates may expand and rearrange eqn first, making errors – they can still earn this M1 when they subst $y = 0$ in their circle eqn; condone omission of $(-2)^2$ for this first M1 only; not for second and third M1 s; do not allow substitution of $x = 0$ for any Ms in this part
	$(x-4)^2 = 12 \text{ or } x^2 - 8x + 4 [= 0]$	M1	putting in form ready to solve by comp sq, or for rearrangement to zero; condone one error;	eg allow M1 for $x^2 + 4 = 0$ [but this two-term quadratic is not eligible for 3 rd M1];
	$x-4 = \pm \sqrt{12} \text{ or}$ $[x=] \frac{8 \pm \sqrt{8^2 - 4 \times 1 \times 4}}{2 \times 1}$	M1	for attempt at comp square or formula; dep on previous M2 earned and on three-term quadratic;	not more than two errors in formula / substitution; allow M1 for $x-4=\sqrt{12}$; M0 for just an attempt to factorise
	$[x=]4 \pm \sqrt{12}$ or $4 \pm 2\sqrt{3}$ or $\frac{8 \pm \sqrt{48}}{2}$ oe isw	A1		
	or	or		
	sketch showing centre (4, 2) and triangle with hyp 4 and ht 2	M1		
	$4^2 - 2^2 = 12$	M1	or the square root of this; implies previous M1 if no sketch seen;	
	$[x =]4 \pm \sqrt{12}$ oe	A2	A1 for one solution	
P <u>hysi</u>	csAndMathsTutor.com			

1	(iii) $t(4+2\sqrt{2}, 2+2\sqrt{2})$ into circle eqn and showing at least one step in correct completion	B1	or showing sketch of centre C and A and using Pythag: $(2\sqrt{2})^2 + (2\sqrt{2})^2 = 8 + 8 = 16;$	or subst the value for one coord in circle eqn and correctly working out the other as a possible value;
	Sketch of both tangents	M1		need not be ruled; must have negative gradients with tangents intended to be parallel and one touching above and to right of centre; mark intent to touch – allow just missing or just crossing circle twice; condone A not labelled
	grad tgt = -1 or -1 /their grad CA	M1	allow ft after correct method seen for grad CA = $\frac{2+2\sqrt{2}-2}{4+2\sqrt{2}-4}$ oe (may be on/ near sketch);	allow ft from wrong centre found in (i);
	$y - (2 + 2\sqrt{2}) = $ their $m(x - (4 + 2\sqrt{2}))$	M1	or $y =$ their $mx + c$ and subst of $(4+2\sqrt{2}, 2+2\sqrt{2});$	for intent; condone lack of brackets for M1 ; independent of previous Ms; condone grad of CA used;
	$y = -x + 6 + 4\sqrt{2}$ oe isw	A1	accept simplified equivs eg $x + y = 6 + 4\sqrt{2}$;	A0 if obtained as eqn of other tangent instead of the tangent at A (eg after omission of brackets);
	parallel tgt goes through $(4-2\sqrt{2}, 2-2\sqrt{2})$	M1	or ft wrong centre; may be shown on diagram; may be implied by correct equation for the tangent (allow ft their gradient);	no bod for just $y-2-2\sqrt{2} = -1(x-4-2\sqrt{2})$ without first seeing correct coordinates;
	eqn is $y = -x + 6 - 4\sqrt{2}$ oe isw	A1	accept simplified equivs eg $x + y = 6 - 4\sqrt{2}$	A0 if this is given as eqn of the tangent at A instead of other tangent (eg after omission of brackets)

2 (i)	centre C' = $(3, -2)$	1	
2 (I)	radius 5	1	$0 \text{ for } \pm 5 \text{ or } 5$
	Tadius 5	I	0 for ± 5 or -5
• (11)	$1 \cdot (c \cdot a)^2 \cdot (c \cdot a)^2 \cdot a \cdot b^2$	D 4	
2 (ii)	showing $(6-3)^2 + (-6+2)^2 = 25$	B1	interim step needed
	\rightarrow \rightarrow (-3)		or B1 each for two of: showing
	showing that $\overrightarrow{AC'} = \overrightarrow{C'B} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ o.	B2	midpoint of $AB = (3, -2)$; showing
			B $(0, 2)$ is on circle; showing AB = 10
			or B2 for showing midpoint of
			AB = (3, -2) and saying this is centre of
			circle
			chele
			an D1 for finding can of AD as
			or B1 for finding eqn of AB as
			y = -4/3 x + 2 o.e. and B1 for finding
			one of its intersections with the circle is
			(0, 2)
			or B1 for showing $C'B = 5$ and B1 for
			showing $AB = 10$ or that AC' and BC'
			have the same gradient
			or B1 for showing that AC' and BC'
			have the same gradient and B1 for
			•
			showing that B $(0, 2)$ is on the circle

2 (iii)	grad AC' or $AB = -4/3$ o.e.	M1	or ft from their C', must be evaluated
	grad tgt = -1 /their AC' grad	M1	may be seen in eqn for tgt; allow M2 for grad tgt = $\frac{3}{4}$ oe soi as first step
	y - (-6) = their $m(x - 6)$ o.e.	M1	or M1 for $y =$ their $m \times x + c$ then subst (6, -6)
	y = 0.75x - 10.5 o.e. isw	A1	eg A1 for $4y = 3x - 42$
			allow B4 for correct equation www isw
2 (iv)	centre C is at (12, -14) cao	B2	B1 for each coord
	circle is $(x - 12)^2 + (y + 14)^2 = 100$	B1	ft their C if at least one coord correct

3 (i)	10	1	
3 (ii)	$[x =] 5 \text{ or ft their } (i) \div 2$	1	not necessarily ft from (i) eg they may start again with calculus to get $x = 5$
	ht = 5[m] cao	1	
3 (iii)	d = 7/2 o.e.	M1	or ft their (ii) -1.5 or their (i) $\div 2 - 1.5$
	$[y =] 1/5 \times 3.5 \times (10 - 3.5)$ o.e. or ft	M1	o. or $7 - 1/5 \times 3.5^2$ or ft
	= 91/20 o.e. cao isw	A1	or showing $y - 4 = 11/20$ o.e. cao

3 (iv)	$4.5 = 1/5 \times x(10 - x)$ o.e.	M1	
	22.5 = x(10 - x) o.e.	M1	eg $4.5 = x(2 - 0.2x)$ etc
	$2x^2 - 20x + 45 = 0$ o.e. eg $x^2 - 10x + 22.5 = 0$ or $(x - 5)^2 = 2.5$	A1	cao; accept versions with fractional coefficients of x^2 , isw
	$[x=]\frac{20\pm\sqrt{40}}{4}$ or $5\pm\frac{1}{2}\sqrt{10}$ o.	M1	or $x-5 = [\pm]\sqrt{2.5}$ o.e.; ft their quadratic eqn provided at least M1 gained already; condone one error in formula or substitution; need not be simplified or be real
	width = $\sqrt{10}$ o.e. eg $2\sqrt{2.5}$ cao	A1	accept simple equivalents only

4	1	(5, 2) √20 or 2√5	1 1	0 for $\pm\sqrt{20}$ etc	2
	II	no, since $\sqrt{20} < 5$ or showing roots of $y^2 - 4y + 9 = 0$ o.e. are not real	2	or ft from their centre and radius M1 for attempt (no and mentioning $\sqrt{20}$ or 5) or sketch or solving by formula or comp sq $(-5)^2 + (y - 2)^2 =$ 20 [condone one error]	
				or SC1 for fully comparing distance from x axis with radius and saying yes	2
		y = 2x – 8 or simplified alternative	2	M1 for $y - 2 = 2(x - 5)$ or ft from (i) or M1 for $y = 2x + c$ and subst their (i) or M1 for ans $y = 2x + k$, $k \neq 0$ or -8	2

v	$(x-5)^2 + (2x)^2 = 20 \text{ o.e.}$	M1	subst 2x + 2 for y [oe for x]
	$5x^2 - 10x + 5[= 0]$ or better equiv.	M1	expanding brackets and rearranging
	obtaining x = 1 (with no other roots) or showing roots equal	M1	to 0; condone one error; dep on first M1
	one intersection [so tangent]	A1	o.e.; must be explicit; or showing line joining (1,4) to centre is perp to $y = 2x + 2$
	(1, 4) cao	A1	allow $y = 4$
	alt method		allow y = 4
	$\frac{1}{y-2} = -\frac{1}{2}(x-5) \text{ o.e.}$ 2x+2-2 = - $\frac{1}{2}(x-5) \text{ o.e.}$ x = 1 y = 4 cao	M1 M1 A1 A1	line through centre perp to $y = 2x + 2$ dep; subst to find intn with $y = 2x + 2$
	showing (1, 4) is on circle	B1	by subst in circle eqn or finding dist from centre = $\sqrt{20}$
			[a similar method earns first M1 for eqn of diameter, 2nd M1 for intn of diameter and circle A1 each for x and y coords and last B1 for showing (1, 4) on line – award onlyA1 if (1, 4)
	alt method		and (9, 0) found without (1, 4) being
	perp dist between $y = 2x - 8$ and $y = 2x + 2 = 10 \cos \theta$ where $\tan \theta$ = 2	M1	identified as the soln]
	showing this is $\sqrt{20}$ so tgt	M1	
		M1	the second second second
	$x = 5 - \sqrt{20} \sin \theta$	A1	or other valid method for obtaining x
	x = 1	A1	ollow v = 4
	(1, 4) cao		allow $y = 4$