\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l|l}
1 \& (i) [radius = \\
\& [centre] \((4,2)\)
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& B0 for \(\pm 4\) \& condone omission of brackets \\
\hline \begin{tabular}{l}
(ii) \((x-4)^{2}+(-2)^{2}=16\) oe
\[
(x-4)^{2}=12 \text { or } x^{2}-8 x+4[=0]
\]
\[
\begin{aligned}
\& x-4= \pm \sqrt{12} \text { or } \\
\& {[x=] \frac{8 \pm \sqrt{8^{2}-4 \times 1 \times 4}}{2 \times 1}}
\end{aligned}
\] \\
\([x=] 4 \pm \sqrt{12}\) or \(4 \pm 2 \sqrt{3}\) or \(\frac{8 \pm \sqrt{48}}{2}\) oe isw \\
or \\
sketch showing centre \((4,2)\) and triangle with hyp 4 and ht 2
\[
4^{2}-2^{2}=12
\] \\
\([x=] 4 \pm \sqrt{12}\) oe \\
hysicsAndMathsTutor.com
\end{tabular} \& M1

M1
M1
A1
M1
or
M1

A2 \& \begin{tabular}{l}
for subst $y=0$ in circle eqn; \\
putting in form ready to solve by comp sq , or for rearrangement to zero; condone one error; \\
for attempt at comp square or formula; dep on previous M2 earned and on three-term quadratic; \\
or the square root of this; implies previous M1 if no sketch seen; \\
A1 for one solution

 \&

NB candidates may expand and rearrange eqn first, making errors - they can still earn this M1 when they subst $y=0$ in their circle eqn; condone omission of $(-2)^{2}$ for this first M1 only; not for second and third M1s; \\
do not allow substitution of $x=0$ for any Ms in this part \\
eg allow M1 for $x^{2}+4=0$ [but this two-term quadratic is not eligible for $3^{\text {rd }} \mathbf{M 1}$]; \\
not more than two errors in formula / substitution; allow M1 for $x-4=\sqrt{12}$; \\
M0 for just an attempt to factorise
\end{tabular} \\

\hline
\end{tabular}

1	(iii) $\quad t(4+2 \sqrt{2}, 2+2 \sqrt{2})$ into

circle eqn and showing at least one step in correct completion

Sketch of both tangents
grad tgt $=-1$ or $-1 /$ their grad CA
$y-(2+2 \sqrt{2})=$ their $m(x-(4+2 \sqrt{2}))$
$y=-x+6+4 \sqrt{2}$ oe isw
parallel tgt goes through
$(4-2 \sqrt{2}, 2-2 \sqrt{2})$
eqn is $y=-x+6-4 \sqrt{2}$ oe isw
or showing sketch of centre C and A and using Pythag:

$$
(2 \sqrt{2})^{2}+(2 \sqrt{2})^{2}=8+8=16 ;
$$

allow ft after correct method seen for $\operatorname{grad} \mathrm{CA}=\frac{2+2 \sqrt{2}-2}{4+2 \sqrt{2}-4}$ oe (may be on/ near sketch);

M1

A1
$x+y=6+4 \sqrt{2}$;
M1
or ft wrong centre; may be shown on diagram; may be implied by correct equation for the tangent (allow ft their gradient);

A1 accept simplified equivs eg
$x+y=6-4 \sqrt{2}$
or subst the value for one coord in circle eqn and correctly working out the other as a possible value;
need not be ruled;
must have negative gradients with tangents intended to be parallel and one touching above and to right of centre; mark intent to touch - allow just missing or just crossing circle twice; condone A not labelled
allow ft from wrong centre found in (i);
for intent; condone lack of brackets for M1;
independent of previous Ms; condone grad of CA used;

A0 if obtained as eqn of other tangent instead of the tangent at A (eg after omission of brackets);
no bod for just $y-2-2 \sqrt{2}=-1(x-4-2 \sqrt{2})$ without first seeing correct coordinates;

A0 if this is given as eqn of the tangent at A instead of other tangent (eg after omission of brackets)

2 (i)	centre $\mathrm{C}^{\prime}=(3,-2)$ radius 5	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	0 for ± 5 or -5
2 (ii)	showing $(6-3)^{2}+(-6+2)^{2}=25$ showing that $\overrightarrow{A C^{\prime}}=\overrightarrow{C^{\prime} B}=\binom{-3}{4}$ o.	B1	interim step needed or B1 each for two of: showing midpoint of $A B=(3,-2)$; showing $B(0,2)$ is on circle; showing $A B=10$ or $\mathbf{B 2}$ for showing midpoint of $A B=(3,-2)$ and saying this is centre of circle or $\mathbf{B 1}$ for finding eqn of AB as $y=-4 / 3 x+2$ o.e. and B1 for finding one of its intersections with the circle is $(0,2)$ or $\mathbf{B 1}$ for showing $C^{\prime} B=5$ and $\mathbf{B 1}$ for showing $\mathrm{AB}=10$ or that AC^{\prime} and BC^{\prime} have the same gradient or B1 for showing that AC^{\prime} and BC^{\prime} have the same gradient and B1 for showing that $B(0,2)$ is on the circle

2 (iii)	$\operatorname{grad} A C '$ or $A B=-4 / 3$ o.e. grad tgt $=-1 /$ their AC^{\prime} grad $y-(-6)=$ their $m(x-6)$ o.e. $y=0.75 x-10.5$ o.e. isw	M1 M1 M1 A1	or ft from their C', must be evaluated may be seen in eqn for tgt; allow M2 for grad tgt $=3 / 4$ oe soi as first step or M1 for $y=$ their $m \times x+c$ then subst (6, -6) eg A1 for $4 y=3 x-42$ allow B4 for correct equation www isw
2 (iv)	centre C is at $(12,-14)$ cao circle is $(x-12)^{2}+(y+14)^{2}=100$	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	B1 for each coord ft their C if at least one coord correct

3 (i)	10	1	
3 (ii)	$[x=] 5 \text { or } \mathrm{ft} \text { their (i) } \div 2$ $\mathrm{ht}=5[\mathrm{~m}] \text { cao }$	1 1	not necessarily ft from (i) eg they may start again with calculus to get $x=5$
3 (iii)	$d=7 / 2 \text { o.e. }$ $[y=] 1 / 5 \times 3.5 \times(10-3.5)$ o.e. or ft = 91/20 o.e. cao isw	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	or ft their (ii) -1.5 or their (i) $\div 2-1.5$ 0. or $7-1 / 5 \times 3.5^{2}$ or ft or showing $y-4=11 / 20$ o.e. cao

\(\left.$$
\begin{array}{|l|l|c|l|}\hline 3 \text { (iv) } & \begin{array}{l}4.5=1 / 5 \times x(10-x) \text { o.e. } \\
22.5=x(10-x) \text { o.e. } \\
2 x^{2}-20 x+45[=0] \text { o.e. eg } \\
x^{2}-10 x+22.5[=0] \text { or }(x-5)^{2}=2.5\end{array} & \text { M1 } & \text { M1 } \\
{[x=] \frac{20 \pm \sqrt{40}}{4} \text { or } 5 \pm \frac{1}{2} \sqrt{10} \text { o. }} & \text { M1 } & \begin{array}{l}\text { eg } 4.5=x(2-0.2 x) \text { etc } \\
\text { cao; accept versions with fractional } \\
\text { coefficients of } x^{2} \text {, isw }\end{array}
$$ \\
width=\sqrt{10} o.e. eg 2 \sqrt{2.5} cao x-5=[\pm] \sqrt{2.5} o.e.; ft their \\
quadratic eqn provided at least M1 \\
gained already; condone one error in \\
formula or substitution; need not be \\

simplified or be real\end{array}\right]\)| A1 |
| :--- |
| accept simple equivalents only |

\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 \& ii
iii \& \begin{tabular}{l}
\((5,2)\) \\
\(\sqrt{20}\) or \(2 \sqrt{5}\) \\
no, since \(\sqrt{20}<5\) or showing roots of \(y^{2}-4 y+9=0\) o.e. are not real \\
\(y=2 x-8\) or simplified alternative
\end{tabular} \& 1
1
2

2 \& | 0 for $\pm \sqrt{20}$ etc |
| :--- |
| or ft from their centre and radius M1 for attempt (no and mentioning $\sqrt{20}$ or 5) or sketch or solving by formula or comp sq $(-5)^{2}+(y-2)^{2}=$ 20 [condone one error] |
| or SC1 for fully comparing distance from x axis with radius and saying yes |
| M1 for $y-2=2(x-5)$ or ft from (i) or M1 for $y=2 x+c$ and subst their (i) or M1 for ans $y=2 x+k, k \neq 0$ or -8 | \& 2

2
2 \\
\hline
\end{tabular}

